
What Visual Attributes Characterize an Object Class ?

Jianlong Fu1⋆, Jinqiao Wang1, Xin-Jing Wang2, Yong Rui2, Hanqing Lu1

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of
Sciences, No.95, Zhongguancun East Road, Beijing, 100190, China

2Microsoft Research, No.5, Dan Ling Street, Haidian District, Beijing 10080, China
1{jlfu, jqwang, luhq}@nlpr.ia.ac.cn, 2{xjwang, yongrui}@microsoft.com

Abstract. Visual attribute-based learning has shown a big impact on many com-
puter vision problems in recent years. Albeit its usefulness, most of works only
focus on predicting either the presence or the strength of pre-defined attributes. In
this paper, we discuss how to automatically learn visual attributes that character-
ize an object class. Starting from the images of an object class that are collected
from the Web, we first mine visual prototypes of attributes (i.e., a clean interme-
diate representation for learning attributes) by clustering with Gaussian mixtures
from multi-scale salient areas in noisy Web images. Second, a joint optimiza-
tion model is proposed to fulfill the attribute learning with feature selection. As
sparse approximation is adopted for feature selection during the joint optimiza-
tion, the learned attributes tend to present a more representative visual property,
e.g., stripe pattern (when texture features are selected), yellow-color (when color
features are selected). Finally, to quantify the confidence of attributes and re-
strain the noisy attributes learned from the Web, a ranking-based method is pro-
posed to refine the learned attributes. Our approach ensures the learned visual
attributes to be visually recognizable and representative, in contrast to manu-
ally constructed attributes [1] that contain properties difficult to be visualized,
e.g., “smelly,” “smart.” We evaluated our approach on two benchmark datasets,
and compared with state-of-the-art approaches in two aspects: the quality of the
learned visual attributes and their effectiveness in object categorization.

1 Introduction

A visual attribute presents a certain type of property (e.g., striped, yellow, long-neck)
that can describe an object class [2]. Recent research on visual attributes has shown a big
impact on both research achievements and practical applications, e.g., face verification
[3], image retrieval [4][5], object recognition [6][7], and adopting attributes such as
size, color to refine search results by commercial search engines.

However, existing approaches on attribute learning and attribute-based object recog-
nition generally work on the pre-defined vocabulary of attributes, and the task is to pre-
dict the presence or relative strength of an attribute in an image or an object class [8][9].
Few works were done to automatically generate or discover attributes so that images of
this class can be discriminated from images of other object classes when projected into a
more specific and representative attribute space. Moreover, few works were done which
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How to describe 

a giraffe

Feature Space

Fig. 1. An illustration of the attribute learning of “giraffe.” We start with a large collection of
Flickr images (small circles) and produce attributes with example images (large circles) indicating
that a giraffe has a long neck, deer-like face, stripes and four legs.

considered the “visualness” of an attribute1, and generated only visual attributes that
could be effectively modeled with low-level visual features. Osherson and Wilkie col-
lected 85 attributes of 48 animal classes via manual judgments [1], but not all of the
attributes are visual, e.g., “smelly.”

In this paper, we propose an unsupervised approach to learn the visual attributes
that characterize an object class. That is, given an object class with its associated Web
images (e.g., Flickr images), our approach outputs a ranked list of visual attributes that
capture the key properties of the object class, where a rank score suggests the confidence
for each attribute. Fig. 1 shows a few attributes our approach learned from 5, 000 Flickr
images of “giraffe.” It is clear that some attributes are visually recognizable and can
present the property of long-neck, skin patterns, deer-like face and four legs, though we
don’t focus on assigning semantics in this work.

Learning from the Web has demonstrated great success due to the huge quantities
of images and unlimited vocabulary [11]. However, the challenge for learning attributes
from noisy Web images can derive from two aspects. First, Web images often consist
of both main objects and complex background. Second, the text to image association
is far less controlled. For example, an image may be irrelevant to its user-contributed
tag in Flickr. To solve the two problems, we propose an approach with three steps: 1) A
Gaussian mixture model (GMM) [12] is first applied onto the multi-scale salient areas
of a certain class images from Flickr, which generates visual prototypes of attributes,
with each Gaussian one prototype. The intuition of building the visual prototypes is to
reduce the background noises from Flickr images, which ensures a good intermediate
representation for the attribute learning of a targeted object class. 2) Visual prototypes
with specific properties are further learned and represented as attributes, where each
attribute is an ensemble of Gaussian mixtures on the selected features. 3) Each attribute
is ranked according to a confidence score by accumulating the rank scores from its

1 Visualness [10] is a quantitative measure of how likely a concept can be visualized with exam-
ple images.
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contained visual prototypes. Thus, noisy attributes learned from irrelevant images can
be restrained by low scoring.

We conducted comprehensive evaluations of the approach on two standard datasets,
Animal with Attributes [13] and PASCAL VOC 2007. The evaluations show the effec-
tiveness of our approach, which not only learned clean and intuitive attributes of object
classes (e.g., the attribute of “long neck” is ranked at the top for giraffe and “stripe” is
ranked at the top for zebra), but also achieved higher accuracy in object categorization,
compared to state-of-the-art approaches.

The main contribution of this work is the unsupervised data-driven approach which
automatically learns visual attributes from noisy Web images. Specifically, 1) the pro-
posed visual prototype and attribute ranking scheme can effectively reduce the impact
of noises from Web images. 2) The design of spectral analysis with feature selection en-
sures that the learned attribute can reflect a more representative visual property against
previous approaches. 3) This approach is highly efficient and scalable as the training
data is directly collected from the Web without any human cleanup.

2 Related Work

In this section, we review some works related to ours in two categories, i.e., pre-defined
attributes and data-driven attributes.

Learning pre-defined attributes: A large body of works on attribute learning
are based on pre-defined attributes. The list of pre-defined attributes can be generally
formed by human [13][14] or mining online text [15]. Li et al. [16] and Torresani et al.
[17] both consider the output of many object class classifiers of pre-defined categories
as attributes for high-level visual recognition. To utilize the rich data on the Web, Ferrari
et al. [18] learn visual models of a list of given attributes by Web image search results.
A similar work is done by Tamara et al. [15] who automatically mine both texts and im-
ages on the Web to recognize attributes, thus it can dramatically alleviate human efforts.
However, the pre-defined attribute lists crawled from the Web or collected from existing
classifiers are limited and cannot be discriminative to a new specific categorization task.
Besides, some are even not predictable by visual features, e.g., “smell.”

Learning data-driven attributes: As the pre-defined attributes cannot fully dis-
cover specific properties for an object class, data-driven attributes have been proposed
to learn attributes from data itself. Yang et al. [19] propose an automatic event detection
approach from a large collection of unconstrained videos using data-driven approaches.
Jingen et al. [20] automatically infer data-driven attributes from training data using an
information theoretic approach. Yu et al. [2] and Wang et al. [6] design discriminative
attribute learning approaches to improve object recognition, where the large-margin
framework and latent models are adopted, respectively.

Compared to previous data-driven approaches where the attributes are considered
as bag-of-words representation in [19], latent variables in [6] or linear model in [2], our
learned attributes are visually recognizable and tend to present a more representative
visual property with an importance rank score since features are selected in optimization
processes. Meanwhile, we specially design the generating of visual prototypes and the
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scheme of attribute ranking to reduce the impact of noises from Web images, instead of
using them directly as in [17] and [18].

3 Unsupervised Visual Attributes Learning

In this section, we present the details of the proposed unsupervised attributes learning
approach for an object class. The framework is shown in Fig. 2. As we can observe from
this figure, our approach takes as input a set of noisy Flickr images associated with an
object class (shown in (a)) and returns as output a series of ranked attributes (shown
in (e)). To achieve this goal, we first generate the visual prototypes from multi-scale
salient areas (shown in (b) and (c)). Second, a joint optimization model is conducted
to do the attribute learning with feature selection (shown in (d)). Finally, we compute a
confident score for each attribute by accumulating the scores from its contained visual
prototypes in the selected feature space.

(a) Flickr Images of 

giraffe 

(b) Salient regions 

detecting

(c) Visual prototypes 

generating

(d) Visual attributes 

learning 

(e) Visual attributes 

ranking 

0.98

0.80

0.68

0.42

Fig. 2. The proposed unsupervised visual attributes learning approach. In (b), the detected regions
are projected into the low-level feature space. In (c), visual prototypes are first learned from multi-
scale salient regions in the original feature space. In (d), the attributes are further discovered from
visual prototypes in the selected feature space which guarantees to present a certain property, e.g.,
long-neck (when shape features are selected), striped (when texture features are selected).

3.1 Visual Prototypes Generating

To reduce the background interference and ensure that the object-located region of an
image can be selected for attribute learning, we propose a method of generating vi-
sual prototypes. A visual prototype is defined as a clean intermediate representation for
attribute learning. First, we adopt a saliency detection approach [21] with multiple pa-
rameters, which generates a series of salient regions with different scales in an image.
As it is hard to determine which scale the object can locate in, we cluster multi-scale
salient areas by Gaussian mixture models and use the Gaussian mean with covariance
matrix as the visual prototypes. This idea has an intuitive explanation that the object-
located region can be determined by a soft voting from the multi-scale salient areas.
Considering there can be similar images in the set of Flickr images associated with an
object class, this clustering is conducted on the salient regions of all training images.
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The learning model is given in Eq.1:

G(x|ω) =

K∑
i=1

πiGi(x|ωi)

=

K∑
i=1

πi
1

(2π)D/2|Σi|1/2
exp{−1

2
(x− µi)

TΣ−1
i (x− µi)}

(1)

where x is the visual feature of a salient region and Gi(x|ωi) is a visual prototype.
ω = {ω1, ..., ωK} = {(π1, µ1, Σ1), ..., (πK , µK , ΣK)} denotes the parameter set of G.
D is the dimension of x. πi is the weight of each component, πi >= 0 and

∑K
i=1 πi =

1. µ = {µ1, ..., µK} and Σ = {Σ1, ..., ΣK}. µi is the mean vector and Σi is the
covariance matrix of the ith component.

The two parameters in Eq.1, ω and K, need to be optimized. First, we use the
Expectation Maximization (EM) algorithm [22] to estimate ω. The EM algorithm is
a general method of finding the maximum-likelihood estimate of the parameters of an
underlying distribution from a given data set. Second, as K affects the descriptive ability
of visual prototypes, we apply an n-fold cross-validation approach to determine the best
K, rather than setting it empirically. We separate training data into n pieces and pick n−
1 pieces of data to estimate ω. Then we calculate the loglikelihood on the rest one piece
of data. The procedure is performed n times and produces an average loglikelihood.
Previous work [12] has demonstrated that with the increasing number of K, the average
loglikelihood increases but seems to be converging to some upper bound. It also shows
that a small number of K is indeed insufficient to achieve good performance. Therefore,
we increase K starting from 50 to +∞ and stop when the difference of loglikelihoods
between two successive calculations is smaller than a threshold (denoted as T1).

3.2 Visual Attributes Learning

Once we have obtained the reliable intermediate representations, i.e., visual prototypes,
we further learn visual attributes by a joint optimization with feature selection. The vi-
sual attributes are learned from a set of similar prototypes in a selected feature space,
which ensures that the learned attributes can describe a certain visual property for an ob-
ject class, e.g., round (when shape features are selected), striped (when texture features
are selected). Note that whether presenting a specific property is the key difference be-
tween attributes and prototypes, while prototypes just represent the appearances of main
objects in images.

For a set of visual prototypes G = {G1, G2, ..., GK}, each prototype Gi is repre-
sented by (µi, Σi). A full-connected graph is constructed between any two prototypes
to reflect a global structure on Gaussian space. Specifically, a label matrix Y ∈ RK×C

is defined as yi,j = 1 if the ith prototype can be grouped into the jth attribute, oth-
erwise 0, where C denotes the number of attributes. Furthermore, to find the specific
visual property in attribute representations, a feature selection matrix W ∈ RD×C is
leveraged.
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A Joint Objective Function Given a spectral clustering term F(Y ) and a feature
selection term L(Y,W ), the joint objective function is proposed as:

min
Y,W
F(Y ) + L(Y,W )

=min
Y,W

Tr[Y TLY ] + α(||µTW − Y ||2F + β||W ||2,1)

s.t. Y TY = IC , Y ≥ 0

(2)

where α and β are two nonnegative parameters.
In the spectral clustering term, an effective affinity matrix is obviously beneficial

to reflect the relationship among different visual prototypes. As each prototype is a
Gaussian, we use KL divergence to depict this relationship. To construct the affinity
matrix S ∈ RK×K , we define:

Si,j = exp{−KL(i, j)2

σ2
} (3)

where σ is a free parameter to control the decay rate and KL divergence between two
prototypes has a closed formed expression:

KL(i, j) =
1

2
[log
|Σj |
|Σi|

+Tr[Σ−1
j Σi]−D + (µi − µj)

TΣ−1
j (µi − µj)] (4)

Then the spectral clustering term is defined as minimizing the following formula:

F(Y ) =
1

2

K∑
i,j=1

Sij ||
yi√
Aii

− yj√
Ajj

||22 = Tr[Y TLY ] (5)

where A is a degree matrix defined as the diagonal matrix with the degrees a1, ..., aK
on the diagonal. ai =

∑K
j=1 Si,j and L = I −A−1/2SA−1/2.

In the feature selection term, mean vector µi is used to describe the visual appear-

ance of the ith prototype. The l21-norm is defined as ||W ||2,1 =
∑D

i=1

√∑C
j=1 W

2
i,j ,

which is viewed as a regularization term to ensure the sparsity of W in row. We con-
strain one prototype can be grouped to one visual attribute, therefore an orthogonal
constraint is imposed. Besides, to make Y more accurate and discriminative, a non-
negative constraint is also introduced. Both the orthogonal and nonnegative constraints
guarantee that there is only one element in each row of Y that is much larger than zero
and the others tend to be zeroes.

In the optimization process, on one hand, the spectral clustering learns the pseudo
cluster labels. On the other, to minimize the overall loss, the algorithm automatically
searches the most discriminative features to pseudo cluster labels and learns feature
selection matrix W .

Optimization Note that the l21-norm is non-smooth and the objective function is not
convex for W and Y simultaneously, then an efficient iterative optimization strategy is
applied. First, we relax the orthogonal term and rewrite the optimization problem as:
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min
Y,W
F(Y ) + L(Y,W )

=min
Y,W

Tr[Y TLY ] + α(||µTW − Y ||2F + β||W ||2,1)

+
γ

2
||Y TY − IC ||2F

s.t. Y ≥ 0

(6)

where γ ≥ 0 is a parameter to control the orthogonal constraint. It can be set large
enough to ensure the constraint satisfied as in [23]. Following [23] and [24], we define
F (Y,W ) = F(Y ) + L(Y,W ). Setting ∂F(Y,W )

∂W = 0, we have:

∂F (Y,W )

∂W
= 2α(µ(µTW − Y ) + βBW ) = 0

⇒W = (µµT + βB)−1µY

(7)

Here B is a diagonal matrix with Bii =
1

2||wi||2 . Representing W by Eqn. 7, Eqn. 6 is
induced as:

min
Y

Tr[Y TZY ] +
γ

2
||Y TY − IC ||2F s.t. Y ≥ 0 (8)

where Z = L+ α[IK − µT (µµT + βB)−1µ] and IK ∈ RK×K is an identity matrix.
Then we introduce multiplicative updating rules. Letting ϕi,j be the Lagrange multiplier
for constraint Yij ≥ 0 and Φ = [ϕij ], the lagrange function is:

Tr[Y TZY ] +
γ

2
||Y TY − IC ||2F +Tr(ΦY T ) (9)

Setting its derivative of Y to zero and using the KKT condition where ϕijYij = 0, Y
can be updated according to the following rules:

Yij ← Yij
(γY )ij

(ZY + γY Y TY )ij
(10)

Then Y is normalized by (Y TY )ii = 1, i = 1, ...,K. Convergence of the iterative
algorithm can be proven in [23].

3.3 Visual Attributes Ranking

The resultant visual attribute models are the clusters of visual prototypes with selected
features. Each cluster represents one attribute representation. We first describe the visual
prototypes in the selected feature space, then the generating of visual attributes with
ranking scheme is further proposed.

After the above optimization, the position of zero rows in W indicates the position
of the feature dimensions which are not discriminative and can be abandoned. There-
fore, we delete the related rows and columns of µi and Σi in Gi to obtain the new
prototype G′

i on the selected features, where these related rows and columns corre-
spond to the abandoned feature dimensions. Then we recalculate the KL divergence as
KL(i, j)′ and the affinity matrix as S′.
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Let the columns of S′ be a standard simplex [25], then S′ has the largest eigenvalue
equal to one and a real eigenvector r∗. The ranking process can be achieved according
to spectral analysis by solving the following objective function:

r∗ = argr min ||S′r − r||22 (11)

here r∗ contains all the rank scores for each new prototype G′
j with selected features

and the optimization can be solved by iterative method [26]. Then the rank score for
each attribute is defined as:

R(Mi) =

|Ni|∑
j=1

r∗j (12)

where Mi denotes the ith attribute and r∗j denotes the rank score of G′
j which is selected

from r∗. This sum runs over the scores of all the prototypes grouped to Mi. |Ni| mea-
sures the size of Mi by its contained prototypes. Attributes are ranked by R(Mi) with
decreasing order. Each produced attribute is a Gaussian mixture, which is presented as
the ensemble of visual prototypes with their ranks:

Mi =

|Ni|∑
j=1

r∗j ∗G′
j (13)

where i = 1, ..., C. The complete unsupervised attributes learning algorithm is sum-
marized in Algorithm 1.

4 Experiments

In this section, we evaluated the proposed approach on two aspects: the quality of the
learned visual attributes for each object class and their effectiveness for object catego-
rization tasks.

4.1 Datasets

For attribute learning, we collected 5, 000 images from Flickr for each object class by
searching user-contributed tags. We extracted features of color (RGB color histogram),
texture [27], shape (PHOG [28] and self-similarity histograms [29]). Different features
were normalized and concatenated into a feature vector with the dimension of 1073.

For object categorization, we trained classification models and evaluated them on
two datasets. One is Animal with Attributes (AwA) [13] which contains 30, 475 images
of 50 animal object classes. The other is PASCAL VOC 2007 which consists of 9, 963
images of 20 different object classes.

4.2 Experiment Settings

Parameter Settings for Attribute Learning There are two key parameters in saliency
detection [21], i.e., “sigma” and “level. ” The former one controls the spatial spread of
weights between different image locations. The latter one controls the resolution of the
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Algorithm 1 Unsupervised Visual Attributes Learning
Input: Noisy Flickr images given an object class

parameters K,ω, α, β, γ
1.Saliency detection and feature extraction
2.Visual prototypes generating by Eqn. 1

ω is determined by EM algorithm
K is determined by cross-validation

3.Visual attributes learning by solving Eqn. 2
The iteration step t = 1
Initialize Y ∈ RK×C and W ∈ RD×C

Set B(t) ∈ RD×D as an identity matrix
Repeat:

Z(t) = L+ α[IK − µT (µµT + βB(t))−1µ]

Y
(t+1)
ij = Y

(t)
ij

(γY (t))ij

(Z(t)Y (t)+γY (t)(Y (t))T Y (t))ij

W (t+1) = (µµT + βB(t))−1µY (t+1)

update B(t+1) with B
(t+1)
ii = 1

2||wt+1
i ||2

t = t+ 1
Until Convergence or t = 500

4. Visual attributes ranking
calculate S′

r∗ = argr min ||S′r − r||22
R(Mi) =

∑|Ni|
j=1 r∗j

Mi =
∑|Ni|

j=1 r∗j ∗G′
j

Output: Attributes for the object class

feature map. To produce multi-scale salient regions, the range of “sigma” is set from
0.1 to 1.0 with the step of 0.1, and the “level” is set as [2, 3, 4] and [5, 6, 7]. Hence, there
are totally 20 groups of parameters that can generate 20 salient regions with different
scales for an image in attribute learning.

In the visual prototype generating, we set the threshold T1 as 0.01 and our experi-
ments showed that K varied from 1,000 to 2,000 for most object classes. In the visual
attribute learning, σ in Eqn. 3 is set to 2 empirically. The three parameters α, β, γ
should be determined in Eqn. 6. γ is set to be 108 to ensure the orthogonal constraint as
used in [23]. To evaluate the effect of α and β, a ratio is defined between intra-attribute
similarity and inter-attribute similarity as:

Ratio =
S(intra attribute)

S(inter attribute)
(14)

where S(intra attribute), S(inter attribute) can be obtained by calculating the sum
of similarity of any two prototypes within any attribute (i.e., KL distance between Gaus-
sians) and the sum of the similarity of any two attributes (i.e., KL distance between
Gaussian mixtures), respectively. α and β are set to {1, 10, 102, 103, 104, 105, 106}.
The results on the classes of AwA are shown in Fig. 3. α = 102 and β = 104 were
chosen when the ratio reached the highest value.
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Fig. 3. Parameters setting for α and β for 50 object classes in AwA.

Compared Approaches for Object Categorization The following approaches are
compared for performance evaluation of object categorization tasks.
1. low-level feature: a typical image representation approach with the low-level fea-

tures described in Section 4.1.
2. Classemes [17]: an approach using the output of existing object class classifiers of

pre-defined categories as attributes.
3. category-level attribute designing approach (CLA) [2]: an automatic attribute learn-

ing approach with large-margin framework.
4. LDA-based [30] attribute learning approach: an automatic attribute learning ap-

proach using latent dirichlet allocation to generate attributes for each object class.
Note that attribute-based approaches leverage the outputs on different attributes as fea-
tures, e.g., the output of classifiers in Classemes [17] and CLA [2], the response of
topics in LDA [30] and the response of attributes (i.e., Gaussian mixtures) in our ap-
proach. Classemes was implemented using the author-released code. We implemented
CLA as in [2]. The LDA-based attribute learning approach was trained on noisy Flickr
images as ours, with each topic one attribute. We used a non-linear SVM (χ2 kernel) as
the classification model. The training, testing and validation images were selected ac-
cording to [2] and [31] for AwA dataset and PASCAL VOC 2007 dataset, respectively.

4.3 Attribute Learning Results

We first showed the attribute learning results of our unsupervised approach by fixing
the number of attributes (i.e., C in Eqn. 13) to 30, as the performance cannot increase
with larger numbers examined in the following sections. For different object classes,
we visualized the attributes ranked in No.1, No.5 and No.30 by showing the top five
salient regions from Flickr images with the highest responses to each attribute. The
results are shown in Fig. 4 and Fig. 5. For an attribute, the higher the score, the more
representative it is. As we can observe from Fig. 4, the most representative attribute for
“Deer” is the salient “antler,” which can discriminate deer from other animals such as
sheep or horse. And their body postures are ranked in the fifth place. As we expected,
“long neck” and “stripe texture” are the two most representative attributes for “giraffe”
and “zebra,” respectively. As an interesting discovery, the last image of the top attribute
of zebra is actually a pedestrian crossing due to its similar visual appearance to the skin
of zebras. For “Tiger,” “Persian cat” and “Chihuahua,” the results indicate that their
facial cues are the most representative attributes, followed by body postures or textures.
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It is reasonable because it is often difficult for humans to separate cat and dog only by
their furry body, but we can easily recognize them by their faces.

0.9985

0.6897

0.0861

Deer Giraffe

0.9987

0.7952

0.0806

Zebra

ChihuahuaPersian_catTiger

0.9978

0.8491

0.0683

0.9991

0.7659

0.0567

0.9962

0.7051

0.0631

0.9997

0.8334

0.0577

Fig. 4. Attribute learning results for six object classes of AwA dataset. For each object class, we
visualize attributes ranked in No.1, No.5, No.30 within the 30 attributes by showing the top five
salient regions from Flickr images with their rank scores.

0.9971

0.8712

0.0242

Aeroplane Train

0.9987

0.4517

0.0188

Bus

PlantSofaBicycle

0.9837

0.8189

0.0549

0.9997

0.8721

0.0771

0.9979

0.8701

0.0186

0.9835

0.7871

0.0181

Fig. 5. Attribute learning results for six object classes of PASCAL VOC 2007 dataset (The illus-
tration is same as Fig. 4).

From Fig. 5, we can observe some implicit or even social attributes. For example,
the learned attribute located in the second row of “Train” can be interpreted as “fast.”
For “Sofa,” the second-row attribute reveals that the sofa is a kind of furniture with
its specific function that human can comfortably sit on it. In addition, our approach
can greatly weaken the noisy attributes which correspond to irrelevant images for an
object class. For instance, the third-row attributes ranked in No.30 for all classes have
the lowest rank scores, which reflect those appearances of irrelevant images. The role
of these attributes can be neglected as the responses on them can approach to zero.

Moreover, we examined the most discriminative visual features for different object
classes and showed the results in Tab. 1 and Tab. 2. These numbers are obtained by
calculating the percentage of non-zero rows of each feature type in the feature selection
matrix W . The higher percentages, the more important role the feature type plays. Tak-
ing Tab. 1 as an example, the result shows that texture is the most discriminative feature
type for “Zebra.” While for “Dear,” “Giraffe,” “Persian cat” and “Chihuahua,” shape is
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the most discriminative one, which is consistent with our observation from Fig. 4. It
is reasonable that the texture feature can well reflect the “stripe pattern” of zebra, the
shape feature can reveal the salient contour of “antler” and “long neck” for dear and
giraffe, as well as the facial cues for persian cat and chihuahua.

Table 1. The analysis of feature selection for six object classes in AwA.

color texture shape
Deer 0.55 0.47 0.97
Giraffe 0.6 0.47 0.97
Zebra 0.55 0.98 0.33
Tiger 0.65 0.44 0.12
Persian cat 0.45 0.14 0.93
Chihuahua 0.55 0.12 0.96

Table 2. The analysis of feature selection for six object classes in PASCAL VOC 2007.

color texture shape
Aeroplane 0.52 0.44 0.85
Train 0.45 0.16 0.81
Bus 0.49 0.42 0.82
Bicycle 0.45 0.34 0.87
Sofa 0.81 0.47 0.75
Plant 0.83 0.45 0.73

4.4 Object Categorization on AwA

In this part, we showed the superiority of the learned attributes by applying them to
the task of object categorization on AwA dataset. We first conducted an experiment on
40 known classes. Each object class produced attributes with the number of C, and
thus there were totally attribute features of 40 ∗ C dimensions. We examined the influ-
ence of the number of attributes C of an object class. We can observe from Fig. 6(b),
C increases from 10 to 40. There is no significant accuracy improvement when the C
reaches 30, compared to the performance of C = 40. Therefore, we consider 30 at-
tributes can effectively cover the properties of an object class and we keep this number
for all object classes in the following experiments.

To compare the performance for object categorization, different compared approaches
were constrained to produce the attribute features of the same dimensions. For exam-
ple, Classemes can generate attribute features of 2, 659 dimensions. We used PCA to
reduce this feature representation to the dimension of 1, 200. For LDA-based attribute
learning approach, we produced 30 attributes for each object class and generated 1, 200
attributes for the 40 classes as ours.

Fig. 6(a) shows the comparison result with different attribute learning approaches.
We can observe the following conclusions. First, attribute-based approaches can achieve
higher accuracy against the low-level-feature-based approach when we have enough
training samples, e.g., 30 or 50. Second, our approach surpasses Classemes with pre-
defined attributes, which demonstrates the superiority of the data-driven attribute learn-
ing approach that can detect specific attributes from data itself. Third, compared to
CLA and LDA, the proposed approach consistently achieves better performance. The
reason can be concluded in two folds. On one hand, the feature selection scheme en-
sures to present a certain type of properties, which enhance the discrimination ability in
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object categorization against the CLA approach. On the other, our approach can effec-
tively weaken the noisy attributes learned from irrelevant images and provide a cleaner
attribute representations against the LDA-based approach, which directly learns the at-
tribute from noisy Web images.

# Training Examples # Training Examples

A
c
c
u
ra

c
y

(a) (b)

Fig. 6. Multi-class classification on 40 known object classes. (a) shows the accuracy of various
approaches with the increasing of training examples. (b) shows the influence of different numbers
of attributes in an object class to the classification results (the numbers are in brackets).

To show the performance for 10 novel classes defined in [13], we conducted an in-
teresting experiment which projected images of a novel object class onto the learned
attributes of known classes. As we can observe from Fig. 7, our approach achieves
the best performance compared with both the low-level-feature-based and the attribute-
based approaches. We achieve the accuracy gain of 4.5% against the second-best ap-
proach (Classemes) when using half training samples. We also find that the accuracy
seems to reach an upper bound with the increasing of training samples, which reveals
the limitation of the shared attributes between different object classes.

A
c
c
u
ra

c
y

# Training Examples

Fig. 7. Multi-class classification on 10 novel object classes.
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4.5 Object Categorization on PASCAL VOC 2007

We conducted another object categorization comparison on PASCAL VOC 2007 dataset.
We kept 30 attributes for each object class. As there were 20 classes in the dataset, we
obtained an attribute space of 30 ∗ 20 dimensions. The images of training, testing and
validation were projected into the attribute space, with each response of an attribute as
one attribute feature. Tab. 3 shows the comparison with the four baselines and the best
result reported in [31]. Our proposed attribute-based approach improves the best result
on 8 out of the 20 classes and boosts the mean average precision (mAP) with 2.8%.

5 Conclusion

In this paper, we have studied the problem of automatic visual attributes learning. To
achieve this goal, we proposed an approach with three steps, i.e., prototypes generating,
attributes learning and attributes ranking, which can effectively reduce the impact of
noises in Web images and ensure that the learned attributes can present a certain prop-
erty. Extensive experiments showed the good quality of the learned visual attributes and
their effectiveness in object categorization. Note that this paper focuses only on visual
attribute learning rather than assigning semantic meanings to each learned attribute. We
will study the semantic association in our future work.

Table 3. Classification result on PASCAL VOC 2007

aeroplane bicycle bird boat bottle bus car cat chair cow table
Low level feature 43.1 36.5 42.6 48.7 27.5 40.6 43.9 38.3 42.5 45.1 46.3
BestResult [31] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9
Classemes(600) 70.5 48.5 66.7 68.3 44.7 66.8 64.4 68.0 65.6 60.7 71.7

CLA(600) 65.8 49.0 47.8 57.2 40.0 56.3 60.0 62.4 61.2 46.3 52.6
LDA(600) 61.2 62.8 53.6 56.3 37.5 45.3 46.5 61.3 53.9 60.2 64.8
Ours(600) 67.5 74.6 64.8 62.4 44.8 59.0 50.2 60.0 63.2 70.9 73.4

dog horse mbike person plant sheep sofa train tv mAP
Low level feature 39.4 47.5 40.2 35.3 21.4 31.4 41.6 40.3 18.5 38.5
BestResult [31] 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
Classemes(600) 58.3 59.3 52.2 46.1 25.4 68.1 67.5 69.1 35.5 58.9

CLA(600) 47.8 56.2 62.4 44.1 27.9 41.4 45.3 53.9 25.7 50.1
LDA(600) 52.6 64.5 63.6 67.3 34.0 67.7 48.7 68.5 28.3 54.9
Ours(600) 61.2 66.0 69.7 74.9 40.0 73.4 59.5 73.7 35.5 62.2
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